
CALIFORNIA STATE UNIVERSITY

SACRAMENTO
College of Engineering & Computer Sciences

6000 J St, Sacramento, CA 95819, USA

SOLAR LIGHTING

Team 8: The Solar Lighting Team

Team Members: Scott Carrick, Tony DiMichele, Dylan Lee, Amelia Vo

scottcarrick@csus.edu

tonydimichele@csus.edu

dylanchonglee@csus.edu

avo2@csus.edu

1

TABLE OF CONTENTS
ELEVATOR PITCH ……………………………………………………………………. 4

EXECUTIVE SUMMARY……………………………………………………………... 4

I. INTRODUCTION………….…………………………………………………………… 5

II. SOCIETAL PROBLEM……………………………………………………...…………. 6
A. ENERGY CONSUMPTION FROM LIGHTING………………………….………………... 6
B. POWER GRID RELIABILITY…………………………….……………………………... 6
C. ARTIFICIAL LIGHT Vs. NATURAL LIGHT………………………………………………………... 7

III. DESIGN IDEA…………………………………………………………………………. 7
A. FIRST SEMESTER DESIGN………………………………………………………………………… 7
B. SECOND SEMESTER DESIGN……………………………………………………………………... 8

IV. WORK BREAKDOWN SCHEDULE…………………………………………………. 8
A. AUTOMATIC LIGHTING SCHEDULE………………….…………………………………………. 9
B. USER APPLICATION………………………………………………………………………………... 9
C. PHYSICAL SWITCH………………………………………………………………………………… 10
D. SOLAR TUBE………………………………………………………………………………………... 10
E. SOLAR POWER………………………………………………………………………….…………... 10
F. DOCUMENTATION………………………………………………………………………………….. 11

V. GANTT CHART FOR SPRING………………………………………..……………… 13

VI. GANTT CHART FOR FALL…………………………….………………………...….. 14

VII. TIMELINE…………………………………………………………………………….. 15
A. INSTALLATION OF SOLAR TUBE…………………………………………...………... 15
B. MEASURING ACCURATE LIGHT DATA………………………………………………. 15
C. CONTROLLING MOTOR OUTPUT WITH INCOMING DATA………………...…………. 15
D. INSTALLING ALL HARDWARE……………………………..………………………... 15
E. APPLICATION CORRECTLY RECEIVES AND SENDS DATA……………………………. 15
F. SWITCH CIRCUIT CORRECTLY INTERRUPTS PROGRAM……………………….…….. 15
G. FLAP ACTUATES CORRECTLY IN RESPONSE TO DATA ………………………………. 16
H. SYSTEM FUNCTIONS PROPERLY OFF BATTERY……………………...……...………. 16
I. SYSTEM COMPLETES NECESSARY TESTING……………………..…………………... 16

VIII. FUNDING PROPOSALS………………………...…………………………………… 17

IX. INTEGRATION PLANS………………………………………………………….…… 19
A. SOLAR TUBE………………………………………………………………………… 19
B. SOLAR PANELS, SOLAR CONTROLLER, AND LEDs…………………………………… 19
C. CONTROL BOX……………………………………………………………….……… 19
D. SOLAR TUBE FLAP………………………………………………………...………… 19
E. LIGHT SENSOR………………………………………………………………….…… 19

2

F. USER APP…………………………………………………………………………..… 19
G. PHYSICAL SWITCH…………………………………………………………….……. 20

X. DEVICE TEST PLAN……………………………………………………………….… 20
A. AUTOMATIC LIGHTING CONTROL …………………………………………..………. 20
B. USER APPLICATION………………………………………………………………..… 20
C. PHYSICAL SWITCH ……………………………………………………………..…… 21
D. SOLAR TUBE FLAP……………………………………………………………...…… 21
E. SOLAR POWER……………………………………………………………….………. 21

APPENDIX

A. HARDWARE……………………………………………………………………...…… 23
1. BLOCK DIAGRAM……………………………………………………………….…… 23
2. SCHEMATICS………………………………………………………………………… 24

B. SOFTWARE…………………………………………………………………………… 28
1. SOFTWARE BLOCK DIAGRAM……………………………………………………..… 28
2. RASPBERRY PI SCRIPT BLOCK DIAGRAM…………………………………………… 29
3. USER APPLICATION BLOCK DIAGRAM……………………………………………… 30
4. CODING FOR SPRING 2021…………………………………………………………… 31
5. CODING FOR FALL 2021……………………………………………………….……… 41

C. USER MANUAL………………………………………………………………………. 54
D. POWER SAVINGS DATA…………………………………………………....………... 56
E. RESUMES……………………………………………………………………………… 57

3

TABLE OF FIGURES

Fig. 1. U.S. Commercial Sector Electricity Consumption………………………………………. 6

Fig. 2. U.S. Residential Electricity Consumption……………………………………………….. 6

Fig. 3. CAISO Rolling Blackout Data from August 14 th, 2020[3].. 7

Fig. 4. CAISO Rolling Blackout Data from August 15 th, 2020[3].. 7

Fig. 5. Block Diagram of The Solar Light Design……………………………………………… 7

Fig. 6. Solar Tube Illustrated……………………………………………………………………. 8

Fig 7. Gantt Chart for Spring Semester………………………………………………………… 13

Fig 8. Gantt Chart for Fall Semester…………………………………………………………… 14

Fig 9. Materials Required……………………………………..……………………………….. 17

Fig 10. Materials and Costs for Spring and Fall 2021…………………………………………. 18

Fig. 11. Automatic Lighting Control Test Timeline…………………………………………… 20

Fig. 12. User Application Test Timeline……………………………………………………….. 21

Fig. 13. Physical Switch Test Timeline………………………………………………………… 21

Fig. 14. Solar Tube Flap Test Timeline………………………………………………………… 21

Fig. 15. Solar Power Test Timeline…………………………………………………………….. 22

Fig. 16. Hardware Block Diagram……………………………………………………………... 23

Fig. 17. Solar Lighting PCB Schematic………………………………………………………... 24

Fig. 18. Control Box Hardware………………………………………………………………… 25

Fig. 19. Bluetooth Module Schematic…………………………………………………………. 26

Fig. 20. Bluetooth Module Hardware………………………………………………………….. 27

Fig. 21. Software Block Diagram……………………………………………………………… 28

Fig. 22. Raspberry Pi Script Block Diagram…………………………………………………... 29

Fig. 23. User Application Block Diagram……………………………………………………... 30

4

Elevator Pitch

The Solar Lighting system integrates a solar tube with reactive lighting, allowing a room
to be illuminated by natural light in conjunction with artificial light. The unit will maintain
constant luminosity using sensory data and microcontrollers while recording and reporting the
amount of energy saved. The system will be combined with a solar panel and charge controller to
enable off grid use.

Executive Summary

Before designing any elements of the project described in this report, it was necessary to
establish a clear issue to encompass our design. Each group member had pitched an idea to base
the project around, but the idea that captured us the most was integrating natural light and using
it to replace unneeded electrical lighting. That concept, coupled with the use of a solar tube, was
the beginning of our project idea.

After establishing the societal issue we wished to address, we began to brainstorm the
kind of features our product would have in order to actually impact the societal problem. The
rough concept was to have a controller monitor and maintain the lighting in a space, and have
that be set by the user. This meant we needed a sensor to monitor the lighting, a controller, some
sort of mechanism to change the lighting, and an interface for the user to interact with the device.
Additionally, we would need a space where we could install and test both our device and solar
tube integration. Thankfully a team member had a small shed that we were given permission to
make alterations to.

As we began the process of documenting our design idea, we chose to make our design
solar powered, as it would further enhance the power saving capabilities of the product. A
closure of some sort was also added to the features to ensure that the space could be made dark
again if the user desired it to be. In order to interact with the system we opted to design a mobile
application that would also report energy data from the system. Lastly, we added a physical
switch to emulate the same experience a normal electrical lighting system produces.

With our features in place, we all began the process of designing our assigned
components. In addition to this, we also had to alter the shed in order to install both the solar
tube and solar panel to the roof. By the end of the first semester we had completed a proof of
concept design in which all of our features could be demonstrated. Most features were built on
breadboards and the system as a whole was not suitable to be installed in the shed.

For the second semester the design stayed the course and work was focused on
completing the integration of all features. The controller board design was fabricated on a PCB
and 3D enclosures were designed for all physical components of the project. The light sensor
was redesigned to allow for it to be a battery powered stand-alone device. The application was
beautified and more functionality was added to allow for it to report data from the controller and
to send commands to the controller.

The device as a whole was completely installed into the shed and was tested for edge
cases to ensure it would function as intended. The design passed all testing cases and proved to
be a successful design. Power saving capabilities of our design were verified, confirming that our
design did in fact address the wasted electrical lighting issue.

5

ABSTRACT — Implementing a system that can react and adjust
to sunlight can increase the efficiency of lighting. Adding solar
tube technology, which can capture and tunnel sunlight from
the roof, into a desired area, allows for solar light to be
utilized as a light source. This is beneficial in that the energy
that is currently being used to light residential and
commercial buildings is not utilizing natural light, allowing
energy savings of up to 30%. Implementing a novel system
which can automatically adjust artificial light in response to
the luminosity of natural light can be used to reach this
desired effect and energy savings. Light-to-digital sensors
provide feedback data which in turn controls two motors, one
which adjusts the brightness of the LED, and another which
partially covers the sun tube via a flap. The designing of such
a product is discussed in detail in this report, including
planning, execution, and testing of the system.

Keywords—automation, solar tube, microcontrollers, artificial
light, natural light, control system, testing

I. INTRODUCTION

When it was first discovered, the use of a
lightbulb allowed daytime to be extended by
artificially recreating the light from the sun.
While this is still a major use of this technology,
lightbulbs can be found illuminating rooms
during daylight hours. What once was an
extension of the day, has become a replacement
for it. Artificial lighting is a significant source of
energy consumption in the United States, and in
this report, we will demonstrate our plan to
reduce its strain on the grid. This will be
accomplished by utilizing natural light and
adjusting the level of artificial light
autonomously, ensuring the user has a consistent
lighting experience whilst consuming much less
electrical power. The design detailed in this
report uses a combination of sensors and a
controller to monitor and adjust the amount of
electrical light in a space. Additionally, a solar
tube will be used to increase the amount of
daylight added into the total ambient light of the
room. This design will help reduce the amount of
energy used to light a room whilst also increasing
natural light.

In this project, a work breakdown structure
assists in breaking a complex project or idea into
definitive features. This allows those who are

working on the project to better estimate time of
completions as well as identify the best route of
actions. In goals that can then be assigned and
completed by the group. Organizing the project
this way increases efficiency whilst also forcing
the team to analyze all aspects of the project and
how they need to be completed, to prevent
unforeseen complications in the design process.

In addition, a detailed timeline aims to
structure the project by sub activities and assess
the time needed to complete each activity. The
timeline uses the work breakdown structure to
further detail when the project should be
completed in an effort to reduce any unforeseen
time crunches. While the timeline indicates the
timing and completion dates of all tasks, the
milestones of the project are also used to track
team progress. These milestones are directly
related to the work breakdown structure and
allow the team to recognize definitive and
testable progress.

In this report, we will define the design idea
and technologies needed. Also, we will detail the
needed resources, project budget, prototype
features, and measurable metrics of our project.

After completing the assembly of different
aspects of this project, the next necessary step is
to test the functionality of the unit. These tests
will ensure that the product is fully functional and
can withstand the expected normal use. While it
is worthwhile to test the product as a whole to
ensure it works as intended, this test plan breaks
the project into testable units to ensure
functionality in each feature.

This report details the testing plans for the
automatic lighting control, the user application,
the physical switch, the solar tube flap, and lastly
the solar power integration. These tests will cover
the function of the individual system as well as its

6

integration points with other features of the
product.

II. SOCIETAL PROBLEM

A. Energy Consumption From Lighting
One of the challenges facing modern societies

is the ability to effectively and efficiently supply
power to all. As the population continues to
exponentially increase, the need for solutions to
power’s efficiency, storage, and creation are ever
present. While there are many ways power is
utilized, lighting is a significant usage of energy
in the United States.

A report by the U.S. Energy Information
Administration indicated that the U.S. uses “219
billion kilowatthours (kWh) of electricity for
lighting” which accounts for “6% of total U.S.
electricity consumption” [1]. While this is not the
largest sector of energy use, it is an area where
improvements can be made and a more stable
grid can be realized. Furthermore, Fig. 1 shows
that the commercial industry itself uses around
10% of its total energy on lighting alone, while
maintaining operational hours that mainly
coincide with sunlight hours. For these reasons,
we believe that incorporating sunlight as a main
resource for interior lighting can better equip our
growing societies energy demands.

Fig. 1. U.S. Commercial Sector Electricity Consumption.

Fig. 2. U.S. Residential Electricity Consumption.

Using a system that can adjust the amount of
artificial light through sensory data can minimize
the energy necessary to illuminate a room. In
fact, the effort to control lighting in relation to the
amount of sunlight present can “save lighting
energy use by up to 30%” [2]. If we compare that
value with the national usage of 219 billion kWh
of energy for lighting, the U.S. can save up to 66
billion kWh of energy per year. The savings in
energy usage can help ensure that electrical
systems have the necessary reserves to protect
from unforeseen complications, such as
inclement weather.

B. Power Grid Reliability

Maintaining a power grid requires a certain
amount of flexibility, as demands in power
fluctuate with time of day as well as the seasons.
While lighting usage does change in accordance
with the time of day, as the seasons change the
lighting needs are not all that affected. In
contrast, as the weather changes, other forms of
energy consumption such as space heating and
cooling increase.

In August of 2020, California saw record high
temperatures, which in turn created peak
demands for energy that were beyond what the
current system could handle. In response,
CAISO, a non-for-profit group tasked with
managing the electrical systems in California,
had to introduce rolling black outs to prevent
damage to the infrastructure. These black outs are
illustrated in the tables below.

7

Fig. 3. CAISO Rolling Blackout Data from August 14th,2020[3].

Fig. 4. CAISO Rolling Blackout Data from August 15th,2020[3].

According to Fig. 3 and Fig. 4, the amount of
energy that was cutoff in order to protect the
power grid was 1072 MW and 698 MW
respectively. Using the estimate that 6% of
energy is used by lighting as stated by reference
[1] as well as the estimate in reference [2], that
30% of lighting power can be saved using a
reactive system, more than enough energy would
have been saved to have prevented these black
outs.

While the California rolling black outs was
just one instance of infrastructure failure, many
more events like these happen all across the
nation. Lighting may not make up a drastic
amount of energy usage but by increasing the
efficiency of these systems, the power grid can
operate more effectively.

C. Artificial Light vs. Natural Light

According to the US EPA (United States
Environmental Protection Agency), many
humans in modern cities spend up to
90% of their lives indoors [4]. This can have
adverse effects on an individual’s health as it can
affect the levels of vitamin D within the body.
Vitamin D deficiency is one of the most common
conditions worldwide with more than 1 billion
people at risk [5].

The major cause of this is lack of vitamin D
in the individual's diet or from insufficient sun
exposure. A few of the side effects caused by a

lack of vitamin D are improper formation of
bones, growth retardation in children, as well as
increasing the risk of autoimmune,
cardiovascular, and infectious diseases [5][6].

Using natural light during times when
artificial lighting is unnecessary can positively
impact an individual. According to a report
published in the Building and Environment
Journal, work was done to see employee's
thoughts on using DGS (Daylight Guidance
Systems) in the core of a building. The findings
concluded that with increased daylight
penetration due to DGS, well-being, mood, and
productivity were positively influenced [7].
Additionally, those who had perceived their
lighting as being higher quality rated their space
as more attractive. This led to a more positive
mood and a greater well-being at the end of the
work day [7].

III. DESIGN IDEA

Fig. 5. Block Diagram of The Solar Light Design

A. First Semester Design

The Solar Lighting system will be controlled
using an Arduino and Raspberry Pi. A GUI
system will be available for users to control
brightness. On normal days, the tube will use
direct sunlight as its main source for lighting the
space. If the sun is too bright, the flap will be
closed to reduce luminosity. For power, the
system will utilize a solar panel and battery. On

8

cloudy days and at nighttime the solar panel,
which is installed on the roof, will charge the
battery which will be used to power the LED.

Fig. 6. Solar Tube Illustrated

The top of the tube that is placed above the
roof is shaped as a hemisphere, which helps
capture sunlight in any direction. The inside of
the tube is made of reflective material, one-way
acrylic mirror film. It allows captured light to
move through the tube and maintain brightness.
In addition, the film will block UV rays from the
sun and only let natural sunlight into the space,
creating a comfortable and safe environment to
stay in all day.

The tube will be installed on the roof of a
shed. One ambient light sensor will be placed
inside the space to measure the luminosity. Users
will be provided a GUI app to control the light as
they want or leave it on auto mode.

B. Second Semester Design

Initially, the control program allowed for the
stepper motors to consume about a half an amp to
keep the stepper motors at their current position.
By programming the MCU properly, the stepper
motors will be powered off while not in
operation. This helps our system last much
longer since the entire application is meant to run
off-grid and helps make our product less wasteful
and more eco-friendly. In addition, the control
program will be further improved to have faster

stabilization times.

In an effort to make the system usable as well
as scalable, it is important to create a light sensor
that is able to run on self-contained battery
power. This change to our design comes after the
realization that other products that are currently
out in the market include battery powered
sensors. Our current design requires the light
sensor to be connected to the main power of the
structure, limiting the location of the sensor and
increasing the installation difficulty. In a Medium
article about product design, they write that
“good products don’t take up more space than
they need to. They fit elegantly into the space
they belong” [8]. If our goal is to decrease the
amount of energy used in lighting, our product
must be usable to a large group of people from
different backgrounds. This understanding
demands that we simplify the product as much as
possible to allow for the user to easily install and
use it, thus requiring an out-of-the-box usable
sensor.

Another improvement on our design is the
beautification and increased functionality of the
user interface. The application will be able to turn
the system off and on, as well as display useful
data to the user. Currently that data consists of the
amount of energy saved per month, and in turn,
how much money the system saved the user.

Lastly, the system as a whole will be made
more marketable by converting the breadboard
circuits to PCB designs and enclosing them in
3D-printed units. The flap will be constructed out
of plastic and will be contained in the same unit
with the flap motor.

IV. WORK BREAKDOWN SCHEDULE

The work necessary to complete the design of
the Solar Lighting project can be divided into its
distinct features. From there, the features can be
broken down into smaller action items that are
needed in order to complete the given feature.

The Solar Lighting system contains five main
features, including automatic lighting control, a

9

user application, a physical switch to locally
control the system, a flap to control the amount of
solar light allowed into the space, and finally the
ability for the system to be solar powered.
Additionally, documentation is required to
organize this project and to detail the steps taken
on the journey to completing it.

A. Automatic Lighting Control

The overall goal of the automatic lighting
system is to provide constant luminosity to a
room at a fraction of the power necessary with
purely artificial lighting. This can be achieved by
auto-adjusting LED strips with a motor controlled
by an Arduino Nano being supplied with
luminosity measurements from a lux sensor. The
entirety of the control system integration and
development should take about 45 hours.

1. Measure Lighting

A Lux sensor will be placed into a corner of
the shed and will be transmitting its
measurements via bluetooth to the Arduino Nano.
This parameter will be arbitrarily set by the user,
and will serve as the set-point luminosity for the
overall control scheme. This sensor will be
powered by an Arduino Nano that is attached to
it, and run directly off the 12V battery. Setting up
the lux sensor will be done by Scott and should
take around 12 hours.

2. Control Program

Lighting measurements will be fed into the
Arduino and fed through the control logic
program in order to actuate the dimmer switch
motor. This system will autonomously control
the overall amount of light in the shed at any
given time relative to user defined parameters.

An off signal from the touch switch will also
trigger the flap to close, and an on signal
will trigger the flap to open. This helps prevent
unnecessary heating of the shed when not in use.
The control program and electronics will be

developed by Tony and should take around 20
hours.

3. Motor Actuation

The circuit’s overall power source will be a
12V lead-acid battery and the motors being used
also run off of 12V. As such, no power step
up/step down is required, but some actuation
logic is. A DC 2-Phase motor controller will be
used to control the actuation of the rotor.

The flap controls will be power regulated
using the same controller setup, but will have two
states only, which will be actuated by the motors
(fully open or fully closed.) These systems will
be developed by Tony and should take around 15
hours.

4. Electrical Lighting

The shed will need to be wired for power
distribution and the various sensors,
microcontrollers, and LEDs placed in their
appropriate places. This will be primarily planned
out by Dylan and the whole team will assist him
with actual construction. This will take around 3
hours to complete.

B. User Application

The main controller of the system is an
Android app which can accept user input and
display the current settings. The user can toggle
between text or slider input and will also display
what the current light levels of the room are as
well as what the user has the system set to. This
feature should take about 40 hours to implement.

1. Building the Application

The application will be built using Java in
Android Studio. The app will be running on
Android version 11 with wifi as the means to
communicate with the RPi. The base of the
application should take around 10 hours and will
be completed by Dylan.

2. Communication with RPi

10

The Raspberry Pi board will be running its
own application that is waiting for input from the
user or updates from the rest of the system based
on the level of light in the room. If a message
comes from the application, then the Raspberry Pi
will take the information and translate it into
something usable by the system. Once the
translations are done the information will be sent
to the system and changes will be made
accordingly. The Raspberry Pi will then send the
information to the application over wifi so the
user can see it. This is programmed by Dylan and
should take at least 20 or 30 hours to implement.

C. Physical Switch

In this part, the elements include Arduino,
physical switch, LEDs, and a solar panel. The
touch capacitive sensor switch is used to control
the system’s on/off state. The whole process is
done by Amelia. This should take around 20
hours to complete.

1. Control program integration

The touch capacitive sensor switch is used to
implement a circuit to control the system. In
normal state, the module outputs low, but when
the switch is touched, the module outputs high
and changes the state of the system.

2. Switch hardware

For the physical hardware, a touch capacitive
switch will be connected to the controlling
Arduino. Arduino pins are used to power the
switch control circuit. The whole system is
powered by solar energy.

D. Solar Tube Flap

While the light coming from the solar tube
will greatly assist in lighting the room, at times
the user may want the room darker. In order to
accomplish this, a flap will be designed in order
to cover the solar tube to prevent unwanted light
from coming into space.
This feature consists of three action items,
including the design of the flap itself, the

software integration with the control program,
and the motor actuation circuit to drive the flap.
Overall, the feature should take around 40 hours
to implement.

1. Flap Design

For the design of the flap, the specific shape
and the materials needed will be determined by
Scott, with input from the rest of the group. The
flap will need to take into account the stepper
motor that is driving it, as well as the shape of the
solar tube. The flap should be able to fully block
the solar tube light allowing the space to return to
its lowest lighted state. A completed covering is
expected after 10 hours of work.

2. Control Program Integration

Since the flap will alter the amount of light in
the space, it is necessary for the control program
to integrate this change into the software. This
will allow the system to actuate the flap if the
light in the space is too bright for the user. Tony
will be responsible for writing the necessary code
to implement the flap with the control program.
This task is expected to take close to 20 hours to
complete, including testing and all necessary
alterations.

3. Motor Actuation Circuit

The final component of the flap feature is
designing the motor circuit and connecting it to
the flap. This will allow the control program to
actuate the flap and complete the necessary
changes to the lighting to meet the users needs.
This circuit will be completed by Tony and
should take around 10 hours to complete.

E. Solar Power

A solar panel and battery will be used to
power the entire system, including the lights and
all microcontrollers. This part is completed by
Amelia and should take around 25 hours to
complete.

11

1. Hardware

The Solar panel connects to the charge
controller which charges the battery. The battery
then connects to the rest of the project to power
the system.

2. Integrating with system

The solar panel is getting the energy from the
sun and powering the whole system which
includes: 2 Arduinos, a Raspberry Pi, 2 motors, a
switch circuit and lighting. For lighting, the solar
panel will charge the battery to power the whole
circuit. The solar panel will allow the battery to
consistently have enough charge to power the
system.

F. Documentation

In order to keep track of the progress and
maintain the necessary organization for this
project, documentation is vital. Throughout the
project, reports will be completed to document
different aspects of the project, including the
identification and explanation of a societal
problem as well as the schedule of when activities
need to be completed to meet the project’s
deadline.

1. Identifying Societal Problem

Before designing a project, it is important to
determine the need for the design. In this project,
we focused on societal issues and documented the
most pressing societal issue that we wish to
address for this project.

2. Design Idea Contract

After identifying the social issue the group
wants to focus on, a technical idea is produced in
order to address the societal problem. This idea is
then documented in a contract in which the
project is described and the feature list is
solidified. This report will be the basis for

determining whether or not the project is
successful.

3. Work Breakdown Structure

In order to achieve all wanted features in our
design, it is crucial to further dissect what each
feature needs in terms of actions or activities.
This allows the project to be organized in a clear
working structure and assist in making a realistic
timeline for the project's completion.

4. Project Timeline

In this report, each feature described in the
work breakdown structure will have defined start
and end dates to facilitate an organized timeline
to the project's completion. In addition,
milestones will be defined to keep track of project
completion.

5. Risk Assessment

With each feature, as well as the project as a
whole, there are certain risks that could prevent
us from completing the project. To mitigate these
we try to identify possible risks and make plans
for mitigation such that the project can still be
completed.

6. Public Prototype Presentation

At the halfway point of this project, the group
will assemble visual aids as well as a video to
present to the public demonstrating the prototype
we’ve designed. The visual aids will assist in
describing the features of our product.

7. Revised Societal Problem

After completing the prototype, the team will
look back at the societal issue and make any
necessary changes to ensure that the product that
is produced, addresses the societal issue defined
at the beginning.

8. Device Test Plan

With the prototype complete, the team can
now assemble test plans to ensure the product
will work as described in conditions that are

12

expected. This will assist in refining the design
and making it close to market designs.

9. Market Review

Before launching a product into a market, a
price must be considered. This price is contingent
on the current market for products that are similar
to ours. The report will detail what products
currently exist as well as where are product lies in
the

10. Feature Report

This report details the function of each feature
of our project, describing the individual function

and how the features combine to make a complete
project.

11. Final Documentation Report

This report will be a culmination of all the
documentation that took place throughout the
project. It will detail each step of the design
process as well the necessary reports, such as the
risk assessment and market review. This will be a
supplement to our design as a comprehensive
explanation to how our project was completed.

13

V. GANTT CHART FOR SPRING 2021

Fig 7. Gantt Chart for Spring Semester

14

VI.GANTT CHART FOR FALL 2021

Fig 8. Gantt Chart for Fall Semester

15
VII. TIMELINE

The milestones listed in this report aim to
identify recognizable accomplishments in the
process of designing our project idea. These
accomplishments are strongly related to the work
breakdown structure and are used to confirm the
completion or success of tasks performed by the
group. The progress the team makes in the design
can be compared to the amount of milestones
accomplished, with a finished design having passed
all milestones.

A. Installation of Solar Tube

The solar tube is an integral part of the project
even though it is completely non-electric. The
addition of natural lighting helps to curb total
energy costs outright, and provides pleasant light to
the room. This milestone was already achieved by
the team in early March, and was found to be very
effective at providing light to the room. Since this
is completed, we can now focus on the more labor
and intellectually intensive portions of the project
requiring electrical engineering skills.

B. Measuring Accurate Light Data

In order to automate the lighting in a space, the
controller will need to obtain an accurate measure
of the current light level. Therefore, a significant
moment in this project will be when the light sensor
is able to measure the light accurately and
repeatedly.

This milestone should occur early in the project
as the completion of the controller program hinges
on accurate light data. Reaching this point will
allow us to enhance the design of the light sensor to
make it more marketable and functional.

C. Controlling Motor Output With Incoming Data

The whole point of the project is to have some
sort of control over the motors to influence the
amount of light shining through the tube as well as
the brightness of the electrical lighting. The motors
will be connected to a controller that gets data from

both the user and the light sensors and will actuate
the tube flap or light brightness as needed.

The implementation for this milestone should
be fairly early on but refining the process will take
much more time to make it more robust and
accurate.

D. Installing All Hardware

A major milestone in the series of events will be
once all of the hardware for the project is installed
completely. When everything is finally put together,
then all of the measuring of data and programming
of hardware can finally be fully measured and used
accordingly.

This milestone will happen at the midpoint of
the project as most of the actual work that needs to
be done hinges on many controllers communicating
at the same time. Additionally, the controllers and
sensors are being designed modularly and thus will
be connected once operating correctly individually.

E. Application Correctly Receives and Sends Data

As the main source of interaction with the
system, the application needs to be first able to send
data to the Raspberry Pi. The user will then see how
their input affects the system and the updated
values from the RPi will be sent back to the user.

This should occur once all hardware is installed
and the proper modules and functions are
programmed into the RPi and the application which
should be somewhere in the middle of the whole
project.

F. Switch Circuit Correctly Interrupts Program

A needed feature in our design was the users
ability to control the system directly and without
the need of the application. This means that a
manual switch will need to be designed and its
signal must properly interrupt the control program
to accomplish the desired result.

The switch circuit can be built in a modular
fashion but will need to be integrated into the
control program software, thus a working program

16
will need to be completed before or alongside this
milestone.

G. Flap Actuates Correctly in Response to Data

A significant feature in our design is a flap that
will cover the solar tube in order to reduce the
natural light as needed by the user. Getting the
designed flap to be actuated by the control program
will be a defining moment in the project. While
the control program and motor actuation circuits
can be built without the flap, getting to the point
where the flap automatically closes will signify
successful integration of several different tasks.

H. System Functions Properly Off Battery

With all components of our design operating off
of a solar panel and battery, the completed design
must be shown to be operable for a considerable

amount of time. This accomplishment will verify
the usability of the system operating completely off
the power grid, an important aspect of our design.

This milestone will be completed near the end
of the design phase, as all the elements of the
project must be working and connected to battery
power to pass this milestone.

I. System Completes Necessary Testing

One of the most obvious milestones in this
project is when the system, after being fully
assembled, responds to the testing parameters
successfully. This will mark a completed project
that can then be further beautified to prepare for the
market. This milestone will most likely occur close
to the end of our projected timeline.

17

VIII. FUNDING PROPOSALS

Quantity Description Cost per unit Total Purchased Purchased By

2
Bluetooth (BLE) HM-10
Board $9.99 $19.98 Yes Scott

1 Lux sensor I2C Adafruit $10.49 $10.49 Yes Scott

1 Solar LightBlaster for Shed $135.97 $135.97 Yes Dylan

2 Stepper motor $16.65 $33.70 Yes Tony

1
Touch Capacitive Sensor
Switch $7.49 $7.49 Yes Amelia

1 Solar Panel Kit $49.99 $49.99 Yes Amelia

2 Stepper Motor Controller $8.46 $16.92 Yes Tony

1 Dimmer Module $9.99 $9.99 Yes Tony

1 12V 20Ah battery $36.90 $36.90 Yes Tony

1
Arduino Nano Boards (pack
of 3) $13.99 $13.99 Yes Scott

1 LED Light Strip $16.99 $16.99 Yes Scott

1 Screws Yes Tony

1 Rubber Washers Yes Tony

1 Electrical Tape Yes Tony

1 Arduino Uno $24.27 $24.27 Yes Tony

1
Stepper Motor Mounting
Bracket $8.96 $8.96 Yes Scott

1 Nuts and Bolts $1.00 $1.00 Yes Scott

20 Wire $0.49 $9.80 Yes Scott

20 Wire $0.49 $9.80 Yes Scott

1 Sheet Metal $7.74 $7.74 Yes Scott

1 Ace Trip $8.62 $8.62 Yes Tony

Fig 9. Materials Required

18

Purchase History Description Purchaser Total

3/10/2021 Solar Tube Dylan $146.51

3/11/2021
Lux sensor and Bluetooth

boards Scott $32.82

3/17/2021 Motors Tony $33.70

3/19/2021 Switch and Solar Panel Amelia $62.51

3/20/21 Roof sealant and caulk gun Scott $11.43

3/28/2021 Arduino Nano boards Scott $15.07

3/30/2021 LED Light Strip Scott $18.31

3/28/2021 Dimmer Module Tony $9.99

3/31/2021 Stepper Motor Controller Tony $16.92

3/31/2021 12V 20Ah battery Tony $36.90

4/3/2021 Ace Hardware Tony $12.00

4/15/21 Arduino Uno Tony $24.27

4/15/2021 Stepper Motor Brackets Scott $9.65

4/17/2021
Hardware; Nuts, Bolts,

Wires Scott $22.11

4/19/2021 Sheet Metal Scott $8.24

4/25/2021 Ace Hardware Tony $8.62

4/17/2021 Food Dylan $38.77

9/9/2021 Bluetooth Module Scott $10.38

9/26/2021 ATmega328 and components Scott $32.28

9/26/2021 Flap components Scott $22.24

Fig 10. Materials and Costs for Spring and Fall 2021

19
IX. INTEGRATION PLANS

A. Solar Tube

The solar tube was installed and tested for leaks
early on in the project. Since this feature has no
moving parts and no electrical components, after
installing and checking that the light came through
and didn’t leak, the integration for the solar tube
was more or less finished.

B. Solar Panels, Solar Controller, and LEDs

Our team purchased an “off the shelf” solar
panel and controller. The panel was mounted on
the roof of the shed and the controller was
mounted on a wall inside the shed. Wires were
run from the panel to controller and a battery was
purchased capable of receiving charge from the
control unit. Since this system was purchased
from a manufacturer, there was very little
debugging needed in order to ensure this portion
of the system was functioning properly.

The LED strips were then soldered according to
our needs and mounted on two of the 2x4 beams
inside of the shed. The entire system was then run
into the “Load” terminal of the solar controller
and functioned perfectly.

C. Control Box

The control box was comprised of an Arduino
Nano, 2 DRV8833 motor controllers, one side of a
HM-10 bluetooth serial module, a buck converter
for stepping down the voltage of the battery to
9-V (the working voltage of the motor
controllers), and the rotary dimmer switch which
was connected to a stepper motor via a motor
shaft coupler. The LED strips were then
connected into the load terminal of the dimmer,
and the motor was actuated and found to be able
to hold its position solely from the mechanical
friction of the system. This allowed the motors to
be turned completely off after actuation and a
small settling time which allowed the motors to

settle. The same was also found to be true of the
flap motor, which was controlled by the same box.
It required us to use cardboard as the flap material
and to orient the flap box in a specific way in
order for the mechanical friction of the flap to
maintain its position as well when the motor to it
was also turned off. Being able to turn the motors
off was critical as its holding current was
extremely high and wasted too much power.

D. Solar Tube Flap

A housing made from PETG was modeled and
3-D printed and installed on the ceiling of the
shed. The flap itself was made from cardboard
since it is completely opaque but also very light
and rigid enough for our application. The flap
was then coupled to the second motor which was
secured within the 3-D printed housing. The flap
was controllable by turning on and off the system
and was found to be functioning correctly.

E. Light Sensor

The light sensor, a VEML7700, was mounted on
the lid of a 3-D printed enclosure and was the only
transducer we used in this project. It collected the
ambient light level of the room and converted it
into a digital value, which was then sent via
bluetooth serial to the other bluetooth module and
sent to the Arduino Nano. The module was
battery powered and portable so that the ideal
location in the room could be found to sense the
combination of light from the solar tube and from
the LEDs.

F. User Application

The user application designed for Android was
the way our project changed parameters inside the
control program, allowing a user to adjust the light
level in the room and turn the system on or off.
The application would talk to a Raspberry Pi
inside the shed and send light level parameters or
on and off signals, which would then be serially

20
communicated via USB to the Arduino Nano
inside the control box. The Nano would then send
back the on/off state, the ambient light level, and a
step position of the motor controlling the dimmer.
The ambient light level would then be displayed
to the user, and the stepper motor position would
be used to estimate the power usage currently
being used by the system based on experimental
data.

G. Physical Switch

A physical switch was also implemented into
the system so that a user could turn the system on
and off inside the shed without the need of an
application. A touch switch was chosen as it
allowed the control program to simply change
state instead of breaking the power connection.
That way the app or switch could be used in
conjunction with one another to turn on/off the
system. The switch was connected to the
controller board PCB with wires.

CONCLUSION

The following systems were modularly
implemented into the Solar Lighting system in this
order and were checked via experimentation to
ensure that all the parts continued functioning as a
cohesive project after each additional layer of
complexity was added. This process of
integrating a part, and then checking for
functionality is an important step to make sure
that all the pieces will work in a controlled
sequence without error.

X. DEVICE TEST PLAN

A. Automatic Lighting Control

1. Necessary Tests

The tests required for the lighting control
actuation are: ensuring motor response to changes
in ambient lighting, switch hardware
interrupts/PCB verification, making sure the
stepper-motor is properly tracking it’s rotation and
are turning off after actuation (no holding

current), and finding a suitable location for the lux
sensor to transmit the best possible light data to
the control board via the bluetooth modules.

2. Test Timeline and Test Assignment

Test Performed by Date

Motor Response to
Changing Light

Parameters

Tony 11/03/2021

PCB handles all data
and interrupts

Tony 11/03/2021

Program is properly
tracking stepper

motors and motors
are not using holding

current

Tony 11/03/2021

Bluetooth
Send/Receiving Light

Data

Tony 11/03/2021

Fig. 11. Automatic Lighting Control Test Timeline

B. User Application

1. Necessary Tests

The tests for the application include the
following functionality: on/off button, the
ability to edit the light setting with a custom or
preset setting, and showing the user extra
details such as energy/money saved. All of
these tests should affect the backend database
values and the changes should be shown to the
user as they occur.

2. Test Timeline and Test Assignment

21

Test Performed by Date

Application
affecting all

database values

Dylan 11/03/2021

Application
showing values

to user

Dylan 11/03/2021

User input
affecting the

system

Dylan 11/03/2021

Fig. 12. User Application Test Timeline

C. Physical Switch

1. Necessary Tests

The physical switch test is to make sure it
can control the whole system ON/OFF. Once the
switch button is pressed, it triggers the system to
turn ON and press again to turn OFF. When the
system is OFF, the user application will not be
able to interrupt it.

2. Test Timeline and Test Assignment

Test Performed by Date

Switch works
as interruption

Amelia 11/03/2021

Switch turn
ON/OFF

Amelia 11/03/2021

Fig. 13. Physical Switch Test Timeline

D. Solar Tube Flap

1. Necessary Tests

To confirm the proper functionality of the
solar tube flap there are two main categories of
testing. First, the correct software testing must be
done to ensure that the flap is receiving the correct
signals at the expected times. Second, the hardware

and mechanics of the flap must be tested to ensure
long term usage and for the effective result of
blocking the solar light.

Using a variety of situations, we will test
the software to make sure the flap actuates when
needed. The points of interest include when the
system turns on and off, through either the
application or physical switch, and when the flap is
actuated by the control program or user
application.

The hardware and mechanics of the flap
will be tested for strain to ensure the stepper motor
can consistently operate the flap without fail. In
addition, the flap will need to consistently maintain
its ability to fully cover the solar tube and block
the sunlight.

2. Test Timeline and Test Assignment

Test: Performed
by

Date

Software
integration with

application

Scott 11/03/2021

Software
integration with
control program

Scott 11/03/2021

Consistent
ability to block
sufficient light

Scott 11/03/2021

Mechanic
functionality

Scott 11/03/2021

Fig. 14. Solar Tube Flap Test Timeline

E. Solar Power

22
1. Necessary Tests

Characterize the solar controllers power
output when directly connected to the lights
versus when our system is integrated into the
lights. Find the expected power savings you
should get out of the system, and document in
the report.

2. Test Timeline and Test Assignment

Test Performed by Date

Battery
integrates with

the system

Amelia 11/03/2021

Battery goes
the standby

state when it’s
not used

Amelia 11/03/2021

Fig. 15. Solar Power Test Timeline

CONCLUSION

The use of a solar tube in conjunction with a
reactive lighting system can help reduce the
power used in an office or residential building,
increase productivity and mental wellness, and
save money by reducing the cost of lighting.
Our product, the Solar Lighting system is a
successful prototype of a system which can
achieve these goals through the means discussed
in this report.

Further reduction of power usage could be
achieved by using more appropriate
microcontrollers, different dimming actuation
means (say purely electronic for example), more
efficient battery storage, or even less
computationally heavy code. Still, given these

areas of improvement, the Solar Lighting system
is a successful proof of concept that such a
reactive lighting system is viable. Further
research and engineering would be necessary in
order to make this product completely market
ready, but as it stands it completes the tasks we
set out to achieve.

REFERENCES

[1] U.S. ENERGY INFORMATION ADMINISTRATION, “HOW MUCH

ELECTRICITY IS USED FOR LIGHTING IN THE UNITED STATES,” U.S.
ENERGY INFORMATION ADMINISTRATION, FEB. 3, 2021. [ONLINE].
AVAILABLE:
HTTPS://WWW.EIA.GOV/TOOLS/FAQS/FAQ.PHP?ID=99&T=3.
[ACCESSED: FEB. 20, 2021].

[2] G. Y. YUN, H. KIM, AND J. T. KIM, “EFFECTS OF OCCUPANCY

AND LIGHTING USE PATTERNS ON LIGHTING ENERGY CONSUMPTION,”
IN ENERGY AND BUILDINGS, VOL. 46, PP. 152-158, 2012.

[3] CALIFORNIA INDEPENDENT SYSTEM OPERATOR, “PRELIMINARY

ROOT CAUSE ANALYSIS MID-AUGUST 2020 HEAT STORM,”
CALIFORNIA INDEPENDENT SYSTEM OPERATOR, OCT. 6, 2020.
[ONLINE]. AVAILABLE:
HTTP://WWW.CAISO.COM/DOCUMENTS/PRELIMINARY-ROOT-CAUSE-
ANALYSIS-ROTATING-OUTAGES-AUGUST-2020.PDF. [ACCESSED:
FEB. 20, 2021].

[4] UNITED STATES ENVIRONMENTAL PROTECTION AGENCY,
“INDOOR AIR QUALITY,” EPA, [ONLINE]. AVAILABLE:
HTTP://WWW.EPA.GOV. [ACCESSED: FEB. 18, 2021].

[5] M. F. HOLICK, “HEALTH BENEFITS OF VITAMIN D AND

SUNLIGHT: A D-BATE,” IN NATURE REVIEWS ENDOCRINOLOGY,
VOL. 7, PP. 73-75, 2011.

[6] M. N. MEAD, “BENEFITS OF SUNLIGHT: A BRIGHT SPOT FOR

HUMAN HEALTH,” IN ENVIROMENT HEALTH PERSPECTIVES, VOL.
116, ISSUE 4, PP. 421-572, APRIL 2008.

[7] M. S. MAYHOUB, AND D. J. CARTER, “THE COSTS AND

BENEFITS OF USING DAYLIGHT GUIDANCE TO LIGHT OFFICE

BUILDINGS,” IN BUILDING AND ENVIRONMENT, VOL. 46, ISSUE 3,
PP. 698-710, 2011.

[8] J. DAVIDSON, "THE 10 COMMANDMENTS OF GOOD

PRODUCTS," MEDIUM, AUG. 28, 2018. [ONLINE]. AVAILABLE:
HTTPS://MEDIUM.COM/SWLH/THE-10-COMMANDMENTS-OF-GOOD-PRO

DUCTS-D1D0A97B30EE. [ACCESSED: SEPT. 9, 2021].

23

APPENDIX

A. HARDWARE

1. Block Diagram

Fig. 16. Hardware Block Diagram

24

2. Hardware Schematics

Fig. 17. Solar Lighting PCB Schematic

25

Fig 18. Control Box Hardware

26

Fig. 19. Bluetooth Module Schematic

27

Fig. 20. Bluetooth Module Circuit

28
B. SOFTWARE
1. Block Diagram

Fig. 21. Software Block Diagram

29
2. Raspberry Pi Script Block Diagram

Fig. 22. Raspberry Pi Script Block Diagram

30

3. User Application Block Diagram

Fig. 23. User Application Block Diagram

31
4. Code Spring 2021

I. User Application Main

import androidx.appcompat.app.AppCompatActivity;
import android.os.Bundle;
import android.text.TextUtils;
import android.view.View;
import android.widget.EditText;
import android.widget.ProgressBar;
import android.widget.SeekBar;
import android.widget.TextView;

import com.chaquo.python.PyObject;
import com.chaquo.python.Python;
import com.chaquo.python.android.AndroidPlatform;
import com.chaquo.python.android.PyApplication;

import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.File;
import java.io.FileReader;
import java.io.FileWriter;
import java.io.FileOutputStream;

import org.eclipse.paho.android.service.MqttAndroidClient;
import org.eclipse.paho.client.mqttv3.IMqttActionListener;
import org.eclipse.paho.client.mqttv3.IMqttToken;
import org.eclipse.paho.client.mqttv3.MqttClient;
import org.eclipse.paho.client.mqttv3.MqttException;
import org.eclipse.paho.client.mqttv3.MqttMessage;
import org.jsoup.Connection.Response;

import org.jsoup.Jsoup;
import org.jsoup.nodes.Document;
import org.jsoup.nodes.Element;
import org.jsoup.select.Elements;

import java.io.IOException;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.nio.charset.StandardCharsets;
import java.nio.file.Path;

public class MainActivity extends AppCompatActivity {

32

int lightLevel = 0;
int seekVal;
EditText mEdit;
TextView progText;
SeekBar sBar;
ProgressBar pBar;

@Override
protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
sBar = (SeekBar)findViewById(R.id.seekBar);
progText = (TextView)findViewById(R.id.seekProg);
pBar = (ProgressBar)findViewById(R.id.progressBar2);
initPython();

String clientID = MqttClient.generateClientId();
MqttAndroidClient client = new

MqttAndroidClient(getApplicationContext(), "broker.emqx.io", clientID);

try {
//MQTT Connect
client.connect().setActionCallback(new IMqttActionListener() {

@Override
public void onSuccess(IMqttToken asyncActionToken) {

System.out.println("Connecting Success");
}

@Override
public void onFailure(IMqttToken asyncActionToken, Throwable

exception) {
System.out.println("Connecting Failed");

}
});

client.subscribe("Test_DylanGetLL",1);

client.disconnect().setActionCallback(new IMqttActionListener()
{

@Override

33

public void onSuccess(IMqttToken asyncActionToken) {
System.out.println("Disconnecting Success");

}

@Override
public void onFailure(IMqttToken asyncActionToken, Throwable

exception) {
System.out.println("Disconnecting Failed");

}
});

} catch(MqttException e){

}

//Shows what setting is currently on the seek bar.
sBar.setOnSeekBarChangeListener(new

SeekBar.OnSeekBarChangeListener() {
@Override
public void onProgressChanged(SeekBar seekBar, int progress,

boolean fromUser) {
pBar.setProgress(progress);
progText.setText(""+progress+"%");

}

@Override
public void onStartTrackingTouch(SeekBar seekBar) {

}

@Override
public void onStopTrackingTouch(SeekBar seekBar) {

}
});

}

private void initPython() {
if(!Python.isStarted()){

Python.start(new AndroidPlatform(this));
System.out.println("Python Started");

}

34

}
private void getPython(int x){

Python py = Python.getInstance();
PyObject number = py.getModule("srproj");
number.callAttr("test", x);
return;

}
//Upon clicking send Parameter button.
public void sendParameter(View view) throws MqttException {

//These are integers
lightLevel = getParameter();
seekVal = sBar.getProgress();
System.out.printf("Seekbar currently at: %d\n", seekVal);
String valx = Integer.toString(seekVal);

//MQTT W/ Python Script Test
getPython(seekVal);

//MQTT Java Test

//MQTT Init
String clientID = MqttClient.generateClientId();
MqttAndroidClient client = new

MqttAndroidClient(getApplicationContext(), "broker.emqx.io", clientID);
MqttMessage msg = new MqttMessage(valx.getBytes());

try {
//MQTT Connect
client.connect().setActionCallback(new IMqttActionListener() {

@Override
public void onSuccess(IMqttToken asyncActionToken) {

System.out.println("Connecting Success");
}

@Override
public void onFailure(IMqttToken asyncActionToken, Throwable

exception) {
System.out.println("Connecting Failed");

}
});

client.publish("TestDylan", msg);

35

client.disconnect().setActionCallback(new IMqttActionListener()
{

@Override
public void onSuccess(IMqttToken asyncActionToken) {

System.out.println("Disconnecting Success");
}

@Override
public void onFailure(IMqttToken asyncActionToken, Throwable

exception) {
System.out.println("Disconnecting Failed");

}
});

} catch(MqttException e){

}

//This is all the jsoup stuff.
}

public int getParameter(){
int val = 0;
double val2 = 0;
mEdit = (EditText)findViewById(R.id.editLL);
mEdit.getText().toString();
try {

val = Integer.parseInt(mEdit.getText().toString());
}
catch(NumberFormatException e){

if(TextUtils.isEmpty(mEdit.getText().toString())){
val = 0;

} else{
val2 = Double.parseDouble(mEdit.getText().toString());
val = (int)val2;

}
}
if(val < 0 || val > 100) {

System.out.println("Invalid Argument. Setting Light to 0");
val = 0;

}
return val;

}

36
II. Raspberry Pi Script

import paho.mqtt.client as mqtt
import serial
import time

#serial1 = serial.Serial('/dev/ttyACM1', 115200)

Lgt_Lvl = 10

def on_connect(client, userdata, flags, rc):
print("Connected with result code "+str(rc))
client.subscribe("TestDylan")

def on_message(client, userdata, msg):
msg.payload = msg.payload.decode("utf-8")

if int(msg.payload) <= 100:
print("Correct Input.")
print("Input: " +msg.payload)
serial1.write(msg.payload.encode())
time.sleep(1)
for x in range(4):

print("Printed")
serial1.write(msg.payload.encode())
time.sleep(1.4)

def send_lgtlvl():
client.publish("TestDylan_GetLL", Lgt_Lvl);

client = mqtt.Client()
client.on_connect = on_connect
client.on_message = on_message

client.connect("broker.emqx.io", 1883, 60)

client.loop_start()
while True:

send_lgtlvl()
time.sleep(2)

37
III. Light Sensor Bluetooth

// This code will serve as the controller
// arduino code. It will recieve the light
// sensor data from the Sensor arduino.

#include "Adafruit_VEML7700.h"
#include <AltSoftSerial.h>
AltSoftSerial BTserial;
// https://www.pjrc.com/teensy/td_libs_AltSoftSerial.html
Adafruit_VEML7700 veml = Adafruit_VEML7700();

String a = " ";
char c = ' ';
boolean NL = true;
char reply[30];
int pos;

void setup()
{

Serial.begin(9600);
Serial.print("Sketch: "); Serial.println(__FILE__);
Serial.print("Uploaded: "); Serial.println(__DATE__);
Serial.println(" ");

// Starting bluetooth serial
BTserial.begin(9600);
Serial.println("BTserial started at 9600");

veml.begin();
veml.setGain(VEML7700_GAIN_1);
veml.setIntegrationTime(VEML7700_IT_800MS);

}

void loop()
{

// Read light sensor data and send to write to bluetooth

pos = veml.readLux();
Serial.println(pos);
BTserial.print(pos);
delay(2000);

38

}

IV. Control Program

//

#include <Stepper.h>
#include <AltSoftSerial.h>
#include <avr/sleep.h> //this AVR library contains the methods that controls the sleep modes

#define interruptPin 2 //Pin we are going to use to wake up the Arduino

AltSoftSerial BTserial;
Stepper stepper1(200, 4, 5, 6, 7);
Stepper stepper2(200, 10, 11, 12, 13);
int step_parameter = 0;
int step_position = 0;
int actuation = 0;
int light_data_int;
int light_set_point = 250;
int steps = 10 ;
String light_data = " ";
bool sleep_parameter = 0;
String inByte;
bool program_state = 0;
int flap = 50;

void setup()
{
Serial.begin(115200);
Serial.println("Stepper test!");
stepper1.setSpeed(30); // set the speed of the motor (RPM)
stepper2.setSpeed(10);
stepper2.step(flap);
BTserial.begin(9600);
Serial.println("BTserial started at 9600");
delay(2000);

// Interupt Pin Set-up
pinMode(interruptPin,INPUT_PULLUP);//Set pin d2 to input using the buildin pullup resistor

}

void loop()

39

{
if(program_state == 1){

// Attach Switch Interupt
attachInterrupt(digitalPinToInterrupt(interruptPin), changeState, RISING);

//Recieve Data From App
inByte = (Serial.readString());
Serial.println("inByte "); Serial.print(inByte);
if(inByte != NULL) {
light_set_point = (inByte.toInt());
Serial.print("light_set_point "); Serial.println(light_set_point);
delay(50);
}

// This will read the serial data coming from the light sensor and convert it into an integer
light_data = BTserial.readString();
//Serial.println(light_data); //debugging, comment out when working
light_data_int = light_data.toInt();
Serial.println(light_data_int); //debugging, comment out when working

// Clockwise Motor Actuation
if((light_data_int < light_set_point) && (light_set_point-light_data_int > 10) && (step_position <

160)){
stepper1.step(steps);
step_position = step_position + 10;
Serial.print("Actuating up!! Step Position = ");
Serial.println(step_position);

}

// Counterclockwise Actuation
else if(light_data_int > light_set_point && (light_set_point-light_data_int < -10) &&

(step_position > 0)){
stepper1.step(-steps);
step_position = step_position - 10;
Serial.print("Actuating down!! Step Position = ");
Serial.println(step_position);

}

// DO NOT ACUTATE MOTOR
else if(light_set_point-light_data_int >= 10 || light_set_point-light_data_int <= -10){
Serial.println("Not Actuating!!"); // debugging, comment out when working

}

40

// reset the serial port
while(Serial.read() >= 0);
Serial.read();

// reset Bluetooth serial
while(BTserial.read() >= 0);
BTserial.read();

}

if(program_state == 0){
stepper2.step(-flap);
stepper1.step(-step_position);
step_position = 0;
sleep_enable();//Enabling sleep mode
attachInterrupt(digitalPinToInterrupt(interruptPin), changeState, RISING);
set_sleep_mode(SLEEP_MODE_PWR_DOWN);
sleep_cpu();
Serial.println("just woke up!");
stepper2.step(flap);

}
}

void changeState(){

Serial.println("Interrrupt Fired");

// if(program_state == 0){
// //Open flap
// Serial.println("Opening Flap");
// }
//
// else {
// //Close Flap
// Serial.println("CLosing Flap");
// }

program_state = !program_state;
Serial.println(program_state);
sleep_disable();
detachInterrupt(0);

}

41

5. Coding for Fall 2021

I. User Application Main

public class MainActivity extends AppCompatActivity {
private Button lButton;
private Button ooButton;
private Button exButton;
private TextView statText;
private String value;

@Override
protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
final RelativeLayout relativeLayout;
relativeLayout = findViewById(R.id.bgr);

//Button to open up light settings page
lButton = (Button) findViewById(R.id.LightButton);
//Button for on/off
ooButton = (Button) findViewById(R.id.PowerButton);
//Button to open up extra info
exButton = (Button) findViewById(R.id.ExtraButton);

lButton.setOnClickListener(new View.OnClickListener() {
@Override
public void onClick(View v) {

openLightSettings();
}

});

exButton.setOnClickListener(new View.OnClickListener() {
@Override
public void onClick(View v) {

openExtraSettings();
}

});

DatabaseReference ref;
ref = FirebaseDatabase.getInstance().getReference().child("values");

42

//Write on/off to database
ooButton.setOnClickListener(new View.OnClickListener() {

@Override
public void onClick(View v) {

if(value.equals("on")) {
ref.child("status").setValue("off");

} else if(value.equals("off")){
ref.child("status").setValue("on");

}
}

});

// Attach a listener to read the data at our posts reference
ref.addValueEventListener(new ValueEventListener() {

@Override
public void onDataChange(DataSnapshot dataSnapshot) {

value = dataSnapshot.child("status").getValue().toString();
System.out.println(value);
if(value.equals("on")){

relativeLayout.setBackgroundResource(R.color.on_color);
} else if(value.equals("off")){

relativeLayout.setBackgroundResource(R.color.off_color);
}
updateText(value);

}

@Override
public void onCancelled(DatabaseError databaseError) {

System.out.println("The read failed: " +
databaseError.getCode());

}
});

}

public void openLightSettings() {
Intent intent = new Intent(this, LightSettings.class);
startActivity(intent);

}

public void openExtraSettings() {
Intent intent = new Intent(this, ExtraInfo.class);
startActivity(intent);

43

}
public void updateText(String status){

statText = (TextView) findViewById(R.id.StatusText);
statText.setText("Current Setting: "+ status);

}

}

II. User Application Light Settings

public class LightSettings extends AppCompatActivity {
private Button cusButton;
private Button preButton;
private TextView lText;
private TextView sText;
private TextView step;
private boolean cusPress = false;
private boolean prePress = false;
private boolean test = true;

@Override
protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.activity_light_settings);
cusButton = (Button) findViewById(R.id.Custom);
preButton = (Button) findViewById(R.id.Presets);

//Get Database
DatabaseReference ref;
ref = FirebaseDatabase.getInstance().getReference().child("values");
Toast.makeText(LightSettings.this, "Firebase Connection

Success",Toast.LENGTH_LONG).show();
// Read from the database

// Attach a listener to read the data at our posts reference
ref.addValueEventListener(new ValueEventListener() {

44

@Override
public void onDataChange(DataSnapshot dataSnapshot) {

//Updates the user light setting when changed
String value =

dataSnapshot.child("light_level").getValue().toString();
updateLText(value);

//Updates the shed light when changed
value = dataSnapshot.child("shed_light").getValue().toString();
updateSText(value);

//Updates the step when changed
value = dataSnapshot.child("step").getValue().toString();
updateStep(value);

}

@Override
public void onCancelled(DatabaseError databaseError) {

System.out.println("The read failed: " +
databaseError.getCode());

}
});

cusButton.setOnClickListener(new View.OnClickListener() {
@Override
public void onClick(View w) {

openCustomSettings();

}
});

preButton.setOnClickListener(new View.OnClickListener() {
@Override
public void onClick(View v){

openPresetSettings();
}

});
//runProg();

}

public void openCustomSettings() {
Intent intent = new Intent(this, customa.class);
startActivity(intent);

45

}

public void openPresetSettings(){
Intent intent = new Intent(this, preseta.class);
startActivity(intent);

}
public void updateLText(String Light){

lText = (TextView) findViewById(R.id.LightSettings);
lText.setText("Current User Light Setting: "+Light);

}
public void updateSText(String Light){

sText = (TextView) findViewById(R.id.ShedLight);
sText.setText("Current Shed Light Level: "+Light);

}
public void updateStep(String StepSet){

step = (TextView) findViewById(R.id.Step);
step.setText("For Step Debugging Purposes; Step: "+ StepSet);

}

}

III. User Application Custom Setting

public class customa extends AppCompatActivity {
private EditText custom_set;
private Button Send;

@Override
protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.activity_customa);
custom_set = (EditText) findViewById(R.id.CustomLevel);
Send = (Button) findViewById(R.id.SendButton);
//Connect to database
DatabaseReference ref;
ref = FirebaseDatabase.getInstance().getReference().child("values");

//Send Value to database
Send.setOnClickListener(new View.OnClickListener() {

@Override

46

public void onClick(View w) {

ref.child("light_level").setValue(custom_set.getText().toString());
}

});
}

}

IV. User Application Extra Information

public class ExtraInfo extends AppCompatActivity {
private String info = "Current Power Usage:";
private TextView pwrText;

@Override
protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.activity_extra_info);

DatabaseReference ref;
ref = FirebaseDatabase.getInstance().getReference().child("values");

ref.addValueEventListener(new ValueEventListener() {
@Override
public void onDataChange(DataSnapshot dataSnapshot) {

//Updates the power usage when step changes
String value =

dataSnapshot.child("power_usage").getValue().toString();
updatePwr(value);

}

@Override
public void onCancelled(DatabaseError databaseError) {

System.out.println("The read failed: " +
databaseError.getCode());

}
});

}

47

void updatePwr(String s){
pwrText = (TextView) findViewById(R.id.pwrUsage);
pwrText.setText("Current Power Usage:"+s+"W");

}

}

V. Raspberry Pi Script

import pyrebase
import serial
import time

serial1 = serial.Serial('/dev/ttyUSB0', 115200)

config = {
"apiKey": "AIzaSyDnOtrNEDTf7j1bZiy8oYv6M9J-hlSsTds",
"authDomain": "sr-proj-light.firebaseapp.com",
"databaseURL": "https://sr-proj-light-default-rtdb.firebaseio.com/",
"storageBucket": "sr-proj-light.appspot.com",
"serviceAccount": "/home/pi/Desktop/sr_proj/sr-proj-light-firebase-adminsdk-a92tf-8d53e32be1.json"

}

#Connect to the backend
firebase = pyrebase.initialize_app(config)
db = firebase.database()
auth = firebase.auth()

#Live update of the changed values
def stream_handler(message):

light = db.child("values").child("light_level").get().val()
status = db.child("values").child("status").get().val()
#full = status + ";" + light
full = message["data"]
serial1.write(full.encode())
print(full)

#Allows for live updates for changes in values

48

light_stream = db.child("values").child("light_level").stream(stream_handler, stream_id = "light")
status_stream = db.child("values").child("status").stream(stream_handler, stream_id = "status")

#This is how I can update values
#db.child("values").update({"light_level": "20"})

while True:
temp = serial1.readline().decode("utf-8")
split_hold = temp.split(":")
temp_hold = []
word_hold = ""
upload_word = ""
used_pwr = 0
x = 0
max_pwr = 21.195
total_pwr = 0
for element in split_hold:

temp_hold.append(element.strip())
word_hold = temp_hold[0]
if(word_hold == "Light Data" and x == 1):

upload_word = temp_hold[1]
db.child("values").update({"shed_light": upload_word})

if(word_hold == "Step Position" and x == 1):
upload_word = temp_hold[1]
db.child("values").update({"step": upload_word})
if(upload_word == "30"):

used_pwr = 6.75
total_pwr = used_pwr - max_pwr
db.child("values").update({"power_usage": total_pwr})

if(upload_word == "40"):
used_pwr = 8.1
total_pwr = used_pwr - max_pwr
db.child("values").update({"power_usage": total_pwr})

if(upload_word == "50"):
used_pwr = 9.18
total_pwr = used_pwr - max_pwr
db.child("values").update({"power_usage": total_pwr})

if(upload_word == "60"):
used_pwr = 10.395
total_pwr = used_pwr - max_pwr
db.child("values").update({"power_usage": total_pwr})

if(upload_word == "70"):
used_pwr = 11.475

49

total_pwr = used_pwr - max_pwr
db.child("values").update({"power_usage": total_pwr})

if(upload_word == "80"):
used_pwr = 12.555
total_pwr = used_pwr - max_pwr
db.child("values").update({"power_usage": total_pwr})

if(upload_word == "90"):
used_pwr = 13.635
total_pwr = used_pwr - max_pwr
db.child("values").update({"power_usage": total_pwr})

if(upload_word == "100"):
used_pwr = 14.85
total_pwr = used_pwr - max_pwr
db.child("values").update({"power_usage": total_pwr})

if(upload_word == "110"):
used_pwr = 16.335
total_pwr = used_pwr - max_pwr
db.child("values").update({"power_usage": total_pwr})

if(upload_word == "120"):
used_pwr = 17.55
total_pwr = used_pwr - max_pwr
db.child("values").update({"power_usage": total_pwr})

if(upload_word == "130"):
used_pwr = 19.305
total_pwr = used_pwr - max_pwr
db.child("values").update({"power_usage": total_pwr})

if(upload_word == "140"):
used_pwr = 20.925
total_pwr = used_pwr - max_pwr
db.child("values").update({"power_usage": total_pwr})

if(upload_word == "150"):
used_pwr = 23.49
total_pwr = used_pwr - max_pwr
db.child("values").update({"power_usage": total_pwr})

if(upload_word == "160"):
used_pwr = 23.895
total_pwr = used_pwr - max_pwr
db.child("values").update({"power_usage": total_pwr})

x = x+1
x = 0

VI. Control Program

50

#include <Stepper.h>
#include <AltSoftSerial.h>
#include <avr/sleep.h> //this AVR library contains the methods that controls the sleep modes

#define interruptPin 2 //Pin we are going to use to wake up the Arduino

AltSoftSerial BTserial;
Stepper stepper1(200, 4, 5, 6, 7);
Stepper stepper2(200, 10, 11, 12, 13);
int step_parameter = 0;
int step_position = 0;
int actuation = 0;
int light_data_int;
int light_set_point= 0;
int steps = 10 ;
String light_data = " ";
bool sleep_parameter = 0;
bool doOnce = 0;
String inByte;
bool program_state = 0;
int flap = -50;
char array_in[8];
const char delim[2] = ";";
char *ptr = NULL;

void setup()
{
Serial.begin(115200);
Serial.println("Stepper test!");
stepper1.setSpeed(30); // set the speed of the motor (RPM)
stepper2.setSpeed(10);
stepper2.step(flap);

digitalWrite(10,LOW);
digitalWrite(11,LOW);
digitalWrite(12,LOW);
digitalWrite(13,LOW);

BTserial.begin(9600);
Serial.println("BTserial started at 9600");
delay(2000);
Serial.flush();

51

// Interupt Pin Set-up
pinMode(interruptPin,INPUT_PULLUP);//Set pin d2 to input using the buildin pullup resistor

}

void loop()
{
if(program_state == 0){

if(doOnce == 1){
stepper2.step(flap);
doOnce = 0;
Serial.println("MOTORSSSSSSS 0");

}

//Attach Switch Interupt
attachInterrupt(digitalPinToInterrupt(interruptPin), changeState, RISING);

//Recieve Data From App
inByte = Serial.readString();
Serial.println("inByte "); //Serial.print(inByte);
if(inByte != NULL) {
if(inByte == "off"){
Serial.println(inByte);
changeState();

}
else if(inByte == "on"){
} else {
light_set_point = (inByte.toInt());
Serial.println(inByte);

}
}

//
// Serial.print("light_set_point "); Serial.println(light_set_point);

// delay(50);

// This will read the serial data coming from the light sensor and convert it into an integer
light_data = BTserial.readString();
light_data_int = light_data.toInt();
Serial.print("Light Data: "); //debugging, comment out when working
Serial.println(light_data_int);

//Serial.prinntln(light_data_int); //debugging, comment out when working

52

// Clockwise Motor Actuation
if((light_data_int < light_set_point) && (light_set_point-light_data_int > 10) && (step_position <

160)){
stepper1.step(steps);
step_position = step_position + 10;
delay(100);

// Serial.print("Actuating up!! Step Position = ");
// Serial.println(step_position);

}

// Counterclockwise Actuation
else if(light_data_int > light_set_point && (light_set_point-light_data_int < -10) &&

(step_position > 0)){
stepper1.step(-steps);
step_position = step_position - 10;
delay(100);

// Serial.print("Actuating down!! Step Position = ");
// Serial.println(step_position);

}

// DO NOT ACUTATE MOTOR
else if(light_set_point-light_data_int >= 10 || light_set_point-light_data_int <= -10){
//Serial.println("Not Actuating!!"); // debugging, comment out when working

}

motorsOff();
Serial.print("Step Position: "); //debugging, comment out when working
Serial.println(step_position);

// // reset the serial port
// while(Serial.read() >= 0);
// Serial.read();

// reset Bluetooth serial
while(BTserial.read() >= 0);
BTserial.read();

}

if(program_state == 1){
if(doOnce == 0){
stepper2.step(-flap);
stepper1.step(1);
stepper1.step(-step_position-1);
step_position = 0;

53

//turn motors off
delay(500);

motorsOff();
Serial.println("MOTORSSSSSSS 1");
doOnce = 1;
}
//sleep_enable();//Enabling sleep mode
attachInterrupt(digitalPinToInterrupt(interruptPin), changeState, RISING);
inByte = Serial.readString();

Serial.println("inByte "); //Serial.print(inByte);
if(inByte != NULL) {
if(inByte == "on"){
Serial.println(inByte);
changeState();

}
}

//set_sleep_mode(SLEEP_MODE_PWR_DOWN);
//sleep_cpu();
//stepper2.step(flap);

}
}

void changeState(){
Serial.println("Interrrupt Fired");
program_state = !program_state;
//Serial.println(program_state);
sleep_disable();
detachInterrupt(0);

}

void motorsOff(){
digitalWrite(10,LOW);
digitalWrite(11,LOW);
digitalWrite(12,LOW);
digitalWrite(13,LOW);
digitalWrite(4,LOW);
digitalWrite(5,LOW);
digitalWrite(6,LOW);
digitalWrite(7,LOW);

}

54

C. User Manual

I. WELCOME

Thank you for choosing the Solar Lighting
reactive lighting system. This device uses a solar
tube in combination with a robust lumen detection
system to automatically control a lighting
set-point in a room of roughly 200-sq ft. The
control box and ambient light sensor are ready to
go “out-of-the-box”, and a professional technician
will be deployed to install your solar tube, solar
panel, light switch, and flap covering at no
additional cost. Soon you’ll have the benefits of
cheaper electricity costs and free, natural lighting
in your home or office!

Note: An android phone is required to control the set-point
parameters and a download link will be sent to the email you
registered with us at purchase.

II. SAFE HANDLING INSTRUCTIONS

The Solar Lighting System is designed with the
user in mind, but please note the handling
instructions below to avoid damage to the system
or injury to yourself

● Always plug in the wires to the system
in the following order: Battery then Vin/Vout of
the solar panel and then Load (including USB
connections) and unplug the wires in the reverse
order Load then Vin/Vout for solar panel and then
the battery. Not following this scheme may
damage your controller!
● Keep the battery out of direct sunlight
● Do not upload any new code to the

control board
● Do not remove the caps of the lead-acid

battery unless you are replacing it as this could
lead to an accidental short if not handled properly,
schedule for a technician if you are unsure about
how to install a new battery.
● NEVER open the control box, this will

void the warranty and could seriously affect the
system’s operation. The system requires precise
knowledge of it’s position and cannot account for
you moving the motor shafts with your hands.

III. INCLUDED MATERIALS

The kit provided to you includes the
following items:

1 solar panel with controller (installed by
technician)

1 solar tube with refractive dome and diffuser
plate (installed by a technician)

1 touch ON/OFF switch (installed by
technician)

1 flap cover (installed by technician)

1 12V 20AH Lead-Acid Battery

1 control system box

1 light sensor box

1 Raspberry Pi 4 with USB cable

2 rows of 10-ft of Bright White LEDS

25 feet each of 18 gauge red, white, green,
and yellow wire (installed by technician)

4 AA Batteries

IV. SETUP AND OPERATION PROCEDURES

A. Setup
1. Find a suitable spot directly under both

the solar tube and LEDs where the ambient light
sensor will work most effectively. This is at a
height generally between 5-7 feet off the floor
for a 10-12 foot ceiling. Your technician will
help you choose a suitable location. You must
be able to access this location in the future to
reinstall fresh batteries as needed. Turn off the
light sensor when you leave the room via the
switch on the outside of the box to maintain
battery life.

2. Connect the lead-acid battery, solar
panel, and lights to the solar controller (in that
order). Disconnect in the opposite order.
Connect the load + and load - wires of the
control box to the same terminals the LEDs are
connected to. Connect the Raspberry Pi to the
USB outlet of the controller, and the USB from

55

the control box to any of the Raspberry Pi’s
USB ports.

3. Use the download link sent to your email
to install the Solar Lighting app on your android
device and connect the system to your home
wifi.

B. Operation
1. Turn the system ON via the app button

or the touch switch installed in your room.
2. To change the lighting set point of the

room, enter a number into the set-point field
within the app and adjust until a desired
brightness of the room is found. After this the
system will remember your desired brightness
setting, but if you ever wish to change it you can
do so at any time.

3. You may use the app at any time to track
whether the system is ON or OFF and to see the
current light level, light set-point, and power
usage of the lighting system.

4. To turn the system OFF use either the
app button or the touch switch.

56

D. SOLAR LIGHTING POWER SAVINGS DATA

The table and graph below show the power used in our system vs a control. If the system is actuated at 140 steps or less
then there is a power savings versus the light in the room being simply on or off with a regular switch.

Step Position
A w/ ammeter Solar
Lighting System

Solar Lighting
System Power Lights on Full (Control)

A with Lights all the way on, no
Solar Lighting System

30 0.5 6.75 21.195 1.57

40 0.6 8.1 21.195 1.57

50 0.68 9.18 21.195 1.57

60 0.77 10.395 21.195 1.57

70 0.85 11.475 21.195 1.57

80 0.93 12.555 21.195 1.57

90 1.01 13.635 21.195 1.57

100 1.1 14.85 21.195 1.57

110 1.21 16.335 21.195 1.57

120 1.3 17.55 21.195 1.57

130 1.43 19.305 21.195 1.57

140 1.55 20.925 21.195 1.57

150 1.74 23.49 21.195 1.57

160 1.77 23.895 21.195 1.57

57

E. RESUMES

58

59

60

