CSc 205
Computer Systems Structure

Instructor: Dr. Behnam S. Arad Phone: (916) 278-7160
Professor of Computer Science Office: RVR 5044
Office Hours: posted @ http://ecs.csus.edu/~arad/

Text: Computer Organization & Design - The Hardware/Software Interface, Revised 4th Edition

Reference:

Grading Policy:
Term Project and other graded assignments 20%
Midterm exam 40%
Final Exam 40%

Catalog Course Description:
Overview of computer systems organization and design. Concepts of instruction set
architecture, interactions of hardware-software interface, principles of performance analysis,
processor design, instruction level parallelism, survey of contemporary architectures, hierarchical
memory design and analysis, interfacing I/O devices, parallel processing and multiprocessing,
and introduction to EDA tools and methodologies for computer systems design and verification.
3 units.

Prerequisite: Fully classified graduate status in Computer Science, Software Engineering or
Computer Engineering.

Course Policies and Information:
1. Class attendance is required. Any adjustment to this syllabus or assignments will be
 announced in class. In addition, you must check your E-mail messages regularly for any
 important announcement distributed regarding this course.

2. Exams will be closed book/closed notes. Prior to each exam, review guidelines will be
 provided. No make-up exam will be arranged unless there is a serious and compelling
 reason. The instructor must be notified prior to the exam, otherwise no make up will be
 given.

3. You can use a laptop during the lecture only if it is used to take notes to view lecture slides
 for this course. You should not use your laptop for other purposes during the lecture or in a
manner that will disturb other students. All cell phones, pagers, and similar devices should be on a silent mode during the lectures. **Texting is not allowed during the lecture.**

4. All assignments and projects must be your independent work. All incidents of academic dishonesty will be dealt with according to the CSUS academic honesty, policy & procedures. The minimum sanction for each incident is that no credit will be issued to all students involved for the assignment/project. The university policy is posted at:

 http://www.csus.edu/admbus/umanual/UMA00150.htm

5. If you do not already have one, you must obtain a Riverside Hall Key Access (FOB) to be able to access the labs. CSc students need access to RVR 2001 and 2003. You can obtain a form from the Computer Science Office in RVR 3018. You must deliver the approved forms to the Customer Service Center in the Facilities Services Office to pick up the key.

6. A mailing list has been set up for the course called **csc205**. The lists will be exclusively used by the instructor to send assignments and other important information to the students. Subscription to this list is required. Follow the instructions at the following link to subscribe to the mailing list:

 http://hera.ecs.csus.edu/mailman/listinfo/csc205
<table>
<thead>
<tr>
<th>Major Topics</th>
<th>Week(s)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>½</td>
<td>Chapters 1 Patterson & Hennessy</td>
</tr>
<tr>
<td>Instruction Set Architecture</td>
<td>1</td>
<td>Chapter 2 Patterson & Hennessy</td>
</tr>
<tr>
<td>Computer Arithmetic</td>
<td>1</td>
<td>Chapter 3 Patterson & Hennessy</td>
</tr>
<tr>
<td>CAD tools for Computer Systems Modeling and Verification</td>
<td>2</td>
<td>Verilog HDL by Samir Palnitkar</td>
</tr>
<tr>
<td>Performance Analysis</td>
<td>1</td>
<td>Chapters 1 Patterson & Hennessy</td>
</tr>
<tr>
<td>Processor Design</td>
<td>21/2</td>
<td>Chapter 4 & Appendix D, Patterson & Hennessy</td>
</tr>
<tr>
<td>Instruction Level Parallelism</td>
<td>1/2</td>
<td>Chapter 4 Patterson & Hennessy</td>
</tr>
<tr>
<td>Memory Design and Analysis</td>
<td>2</td>
<td>Chapter 5 Patterson & Hennessy</td>
</tr>
<tr>
<td>Peripherals</td>
<td>2</td>
<td>Chapter 6 Patterson & Hennessy</td>
</tr>
<tr>
<td>A survey of contemporary architectures including graphics and computing GPU</td>
<td>1</td>
<td>Appendix A, Patterson & Hennessy</td>
</tr>
<tr>
<td>Multicores, multiprocessors, and clusters</td>
<td>1</td>
<td>Chapter 7, Patterson & Hennessy</td>
</tr>
<tr>
<td>Midterm Exam</td>
<td>1/2</td>
<td></td>
</tr>
</tbody>
</table>

This schedule is tentative and does not list the topics in a chronological order. It will be updated based on the Revised 4th Edition of the textbook as appropriate.